3.210 \(\int \frac{1}{(a-b x^2)^{5/2} \sqrt{a^2-b^2 x^4}} \, dx\)

Optimal. Leaf size=167 \[ \frac{9 x \left (a+b x^2\right )}{32 a^3 \sqrt{a-b x^2} \sqrt{a^2-b^2 x^4}}+\frac{x \left (a+b x^2\right )}{8 a^2 \left (a-b x^2\right )^{3/2} \sqrt{a^2-b^2 x^4}}+\frac{19 \sqrt{a-b x^2} \sqrt{a+b x^2} \tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{b} x}{\sqrt{a+b x^2}}\right )}{32 \sqrt{2} a^3 \sqrt{b} \sqrt{a^2-b^2 x^4}} \]

[Out]

(x*(a + b*x^2))/(8*a^2*(a - b*x^2)^(3/2)*Sqrt[a^2 - b^2*x^4]) + (9*x*(a + b*x^2))/(32*a^3*Sqrt[a - b*x^2]*Sqrt
[a^2 - b^2*x^4]) + (19*Sqrt[a - b*x^2]*Sqrt[a + b*x^2]*ArcTanh[(Sqrt[2]*Sqrt[b]*x)/Sqrt[a + b*x^2]])/(32*Sqrt[
2]*a^3*Sqrt[b]*Sqrt[a^2 - b^2*x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.0873148, antiderivative size = 167, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.207, Rules used = {1152, 414, 527, 12, 377, 208} \[ \frac{9 x \left (a+b x^2\right )}{32 a^3 \sqrt{a-b x^2} \sqrt{a^2-b^2 x^4}}+\frac{x \left (a+b x^2\right )}{8 a^2 \left (a-b x^2\right )^{3/2} \sqrt{a^2-b^2 x^4}}+\frac{19 \sqrt{a-b x^2} \sqrt{a+b x^2} \tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{b} x}{\sqrt{a+b x^2}}\right )}{32 \sqrt{2} a^3 \sqrt{b} \sqrt{a^2-b^2 x^4}} \]

Antiderivative was successfully verified.

[In]

Int[1/((a - b*x^2)^(5/2)*Sqrt[a^2 - b^2*x^4]),x]

[Out]

(x*(a + b*x^2))/(8*a^2*(a - b*x^2)^(3/2)*Sqrt[a^2 - b^2*x^4]) + (9*x*(a + b*x^2))/(32*a^3*Sqrt[a - b*x^2]*Sqrt
[a^2 - b^2*x^4]) + (19*Sqrt[a - b*x^2]*Sqrt[a + b*x^2]*ArcTanh[(Sqrt[2]*Sqrt[b]*x)/Sqrt[a + b*x^2]])/(32*Sqrt[
2]*a^3*Sqrt[b]*Sqrt[a^2 - b^2*x^4])

Rule 1152

Int[((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (c_.)*(x_)^4)^(p_), x_Symbol] :> Dist[(a + c*x^4)^FracPart[p]/((d + e*x
^2)^FracPart[p]*(a/d + (c*x^2)/e)^FracPart[p]), Int[(d + e*x^2)^(p + q)*(a/d + (c*x^2)/e)^p, x], x] /; FreeQ[{
a, c, d, e, p, q}, x] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p]

Rule 414

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> -Simp[(b*x*(a + b*x^n)^(p + 1)*(
c + d*x^n)^(q + 1))/(a*n*(p + 1)*(b*c - a*d)), x] + Dist[1/(a*n*(p + 1)*(b*c - a*d)), Int[(a + b*x^n)^(p + 1)*
(c + d*x^n)^q*Simp[b*c + n*(p + 1)*(b*c - a*d) + d*b*(n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d,
 n, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] &&  !( !IntegerQ[p] && IntegerQ[q] && LtQ[q, -1]) && IntBinomial
Q[a, b, c, d, n, p, q, x]

Rule 527

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> -Simp[
((b*e - a*f)*x*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(a*n*(b*c - a*d)*(p + 1)), x] + Dist[1/(a*n*(b*c - a*d
)*(p + 1)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*(b*e - a*f) + e*n*(b*c - a*d)*(p + 1) + d*(b*e - a*f)
*(n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, q}, x] && LtQ[p, -1]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{\left (a-b x^2\right )^{5/2} \sqrt{a^2-b^2 x^4}} \, dx &=\frac{\left (\sqrt{a-b x^2} \sqrt{a+b x^2}\right ) \int \frac{1}{\left (a-b x^2\right )^3 \sqrt{a+b x^2}} \, dx}{\sqrt{a^2-b^2 x^4}}\\ &=\frac{x \left (a+b x^2\right )}{8 a^2 \left (a-b x^2\right )^{3/2} \sqrt{a^2-b^2 x^4}}+\frac{\left (\sqrt{a-b x^2} \sqrt{a+b x^2}\right ) \int \frac{7 a b+2 b^2 x^2}{\left (a-b x^2\right )^2 \sqrt{a+b x^2}} \, dx}{8 a^2 b \sqrt{a^2-b^2 x^4}}\\ &=\frac{x \left (a+b x^2\right )}{8 a^2 \left (a-b x^2\right )^{3/2} \sqrt{a^2-b^2 x^4}}+\frac{9 x \left (a+b x^2\right )}{32 a^3 \sqrt{a-b x^2} \sqrt{a^2-b^2 x^4}}+\frac{\left (\sqrt{a-b x^2} \sqrt{a+b x^2}\right ) \int \frac{19 a^2 b^2}{\left (a-b x^2\right ) \sqrt{a+b x^2}} \, dx}{32 a^4 b^2 \sqrt{a^2-b^2 x^4}}\\ &=\frac{x \left (a+b x^2\right )}{8 a^2 \left (a-b x^2\right )^{3/2} \sqrt{a^2-b^2 x^4}}+\frac{9 x \left (a+b x^2\right )}{32 a^3 \sqrt{a-b x^2} \sqrt{a^2-b^2 x^4}}+\frac{\left (19 \sqrt{a-b x^2} \sqrt{a+b x^2}\right ) \int \frac{1}{\left (a-b x^2\right ) \sqrt{a+b x^2}} \, dx}{32 a^2 \sqrt{a^2-b^2 x^4}}\\ &=\frac{x \left (a+b x^2\right )}{8 a^2 \left (a-b x^2\right )^{3/2} \sqrt{a^2-b^2 x^4}}+\frac{9 x \left (a+b x^2\right )}{32 a^3 \sqrt{a-b x^2} \sqrt{a^2-b^2 x^4}}+\frac{\left (19 \sqrt{a-b x^2} \sqrt{a+b x^2}\right ) \operatorname{Subst}\left (\int \frac{1}{a-2 a b x^2} \, dx,x,\frac{x}{\sqrt{a+b x^2}}\right )}{32 a^2 \sqrt{a^2-b^2 x^4}}\\ &=\frac{x \left (a+b x^2\right )}{8 a^2 \left (a-b x^2\right )^{3/2} \sqrt{a^2-b^2 x^4}}+\frac{9 x \left (a+b x^2\right )}{32 a^3 \sqrt{a-b x^2} \sqrt{a^2-b^2 x^4}}+\frac{19 \sqrt{a-b x^2} \sqrt{a+b x^2} \tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{b} x}{\sqrt{a+b x^2}}\right )}{32 \sqrt{2} a^3 \sqrt{b} \sqrt{a^2-b^2 x^4}}\\ \end{align*}

Mathematica [A]  time = 0.10748, size = 122, normalized size = 0.73 \[ \frac{\sqrt{a^2-b^2 x^4} \left (2 \sqrt{b} x \left (13 a-9 b x^2\right ) \sqrt{a+b x^2}+19 \sqrt{2} \left (a-b x^2\right )^2 \tanh ^{-1}\left (\frac{\sqrt{2} \sqrt{b} x}{\sqrt{a+b x^2}}\right )\right )}{64 a^3 \sqrt{b} \left (a-b x^2\right )^{5/2} \sqrt{a+b x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((a - b*x^2)^(5/2)*Sqrt[a^2 - b^2*x^4]),x]

[Out]

(Sqrt[a^2 - b^2*x^4]*(2*Sqrt[b]*x*(13*a - 9*b*x^2)*Sqrt[a + b*x^2] + 19*Sqrt[2]*(a - b*x^2)^2*ArcTanh[(Sqrt[2]
*Sqrt[b]*x)/Sqrt[a + b*x^2]]))/(64*a^3*Sqrt[b]*(a - b*x^2)^(5/2)*Sqrt[a + b*x^2])

________________________________________________________________________________________

Maple [B]  time = 0.05, size = 739, normalized size = 4.4 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(-b*x^2+a)^(5/2)/(-b^2*x^4+a^2)^(1/2),x)

[Out]

1/16*(-b*x^2+a)^(1/2)*(-b^2*x^4+a^2)^(1/2)*b^(9/2)*(-19*ln(2*b*(2^(1/2)*a^(1/2)*(b*x^2+a)^(1/2)-(a*b)^(1/2)*x+
a)/(b*x+(a*b)^(1/2)))*2^(1/2)*x^4*b^(5/2)*a^(1/2)+19*ln(2*b*(2^(1/2)*a^(1/2)*(b*x^2+a)^(1/2)+(a*b)^(1/2)*x+a)/
(b*x-(a*b)^(1/2)))*2^(1/2)*x^4*b^(5/2)*a^(1/2)+16*ln((b^(1/2)*(-(b*x+(-a*b)^(1/2))/b*(-b*x+(-a*b)^(1/2)))^(1/2
)+b*x)/b^(1/2))*x^4*b^2*(a*b)^(1/2)+38*ln(2*b*(2^(1/2)*a^(1/2)*(b*x^2+a)^(1/2)-(a*b)^(1/2)*x+a)/(b*x+(a*b)^(1/
2)))*2^(1/2)*x^2*a^(3/2)*b^(3/2)-38*ln(2*b*(2^(1/2)*a^(1/2)*(b*x^2+a)^(1/2)+(a*b)^(1/2)*x+a)/(b*x-(a*b)^(1/2))
)*2^(1/2)*x^2*a^(3/2)*b^(3/2)-16*ln((b^(1/2)*(b*x^2+a)^(1/2)+b*x)/b^(1/2))*x^4*b^2*(a*b)^(1/2)-36*b^(3/2)*(a*b
)^(1/2)*(b*x^2+a)^(1/2)*x^3-32*ln((b^(1/2)*(-(b*x+(-a*b)^(1/2))/b*(-b*x+(-a*b)^(1/2)))^(1/2)+b*x)/b^(1/2))*x^2
*a*b*(a*b)^(1/2)-19*ln(2*b*(2^(1/2)*a^(1/2)*(b*x^2+a)^(1/2)-(a*b)^(1/2)*x+a)/(b*x+(a*b)^(1/2)))*2^(1/2)*a^(5/2
)*b^(1/2)+19*ln(2*b*(2^(1/2)*a^(1/2)*(b*x^2+a)^(1/2)+(a*b)^(1/2)*x+a)/(b*x-(a*b)^(1/2)))*2^(1/2)*a^(5/2)*b^(1/
2)+32*ln((b^(1/2)*(b*x^2+a)^(1/2)+b*x)/b^(1/2))*x^2*a*b*(a*b)^(1/2)+52*b^(1/2)*a*(a*b)^(1/2)*(b*x^2+a)^(1/2)*x
+16*ln((b^(1/2)*(-(b*x+(-a*b)^(1/2))/b*(-b*x+(-a*b)^(1/2)))^(1/2)+b*x)/b^(1/2))*a^2*(a*b)^(1/2)-16*ln((b^(1/2)
*(b*x^2+a)^(1/2)+b*x)/b^(1/2))*a^2*(a*b)^(1/2))/(b*x^2-a)/(b*x^2+a)^(1/2)/((-a*b)^(1/2)+(a*b)^(1/2))^3/((-a*b)
^(1/2)-(a*b)^(1/2))^3/(b*x-(a*b)^(1/2))^2/(a*b)^(1/2)/(b*x+(a*b)^(1/2))^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{-b^{2} x^{4} + a^{2}}{\left (-b x^{2} + a\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-b*x^2+a)^(5/2)/(-b^2*x^4+a^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(-b^2*x^4 + a^2)*(-b*x^2 + a)^(5/2)), x)

________________________________________________________________________________________

Fricas [A]  time = 2.39237, size = 803, normalized size = 4.81 \begin{align*} \left [\frac{19 \, \sqrt{2}{\left (b^{3} x^{6} - 3 \, a b^{2} x^{4} + 3 \, a^{2} b x^{2} - a^{3}\right )} \sqrt{b} \log \left (-\frac{3 \, b^{2} x^{4} - 2 \, a b x^{2} - 2 \, \sqrt{2} \sqrt{-b^{2} x^{4} + a^{2}} \sqrt{-b x^{2} + a} \sqrt{b} x - a^{2}}{b^{2} x^{4} - 2 \, a b x^{2} + a^{2}}\right ) + 4 \, \sqrt{-b^{2} x^{4} + a^{2}}{\left (9 \, b^{2} x^{3} - 13 \, a b x\right )} \sqrt{-b x^{2} + a}}{128 \,{\left (a^{3} b^{4} x^{6} - 3 \, a^{4} b^{3} x^{4} + 3 \, a^{5} b^{2} x^{2} - a^{6} b\right )}}, \frac{19 \, \sqrt{2}{\left (b^{3} x^{6} - 3 \, a b^{2} x^{4} + 3 \, a^{2} b x^{2} - a^{3}\right )} \sqrt{-b} \arctan \left (\frac{\sqrt{2} \sqrt{-b^{2} x^{4} + a^{2}} \sqrt{-b x^{2} + a} \sqrt{-b}}{2 \,{\left (b^{2} x^{3} - a b x\right )}}\right ) + 2 \, \sqrt{-b^{2} x^{4} + a^{2}}{\left (9 \, b^{2} x^{3} - 13 \, a b x\right )} \sqrt{-b x^{2} + a}}{64 \,{\left (a^{3} b^{4} x^{6} - 3 \, a^{4} b^{3} x^{4} + 3 \, a^{5} b^{2} x^{2} - a^{6} b\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-b*x^2+a)^(5/2)/(-b^2*x^4+a^2)^(1/2),x, algorithm="fricas")

[Out]

[1/128*(19*sqrt(2)*(b^3*x^6 - 3*a*b^2*x^4 + 3*a^2*b*x^2 - a^3)*sqrt(b)*log(-(3*b^2*x^4 - 2*a*b*x^2 - 2*sqrt(2)
*sqrt(-b^2*x^4 + a^2)*sqrt(-b*x^2 + a)*sqrt(b)*x - a^2)/(b^2*x^4 - 2*a*b*x^2 + a^2)) + 4*sqrt(-b^2*x^4 + a^2)*
(9*b^2*x^3 - 13*a*b*x)*sqrt(-b*x^2 + a))/(a^3*b^4*x^6 - 3*a^4*b^3*x^4 + 3*a^5*b^2*x^2 - a^6*b), 1/64*(19*sqrt(
2)*(b^3*x^6 - 3*a*b^2*x^4 + 3*a^2*b*x^2 - a^3)*sqrt(-b)*arctan(1/2*sqrt(2)*sqrt(-b^2*x^4 + a^2)*sqrt(-b*x^2 +
a)*sqrt(-b)/(b^2*x^3 - a*b*x)) + 2*sqrt(-b^2*x^4 + a^2)*(9*b^2*x^3 - 13*a*b*x)*sqrt(-b*x^2 + a))/(a^3*b^4*x^6
- 3*a^4*b^3*x^4 + 3*a^5*b^2*x^2 - a^6*b)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{- \left (- a + b x^{2}\right ) \left (a + b x^{2}\right )} \left (a - b x^{2}\right )^{\frac{5}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-b*x**2+a)**(5/2)/(-b**2*x**4+a**2)**(1/2),x)

[Out]

Integral(1/(sqrt(-(-a + b*x**2)*(a + b*x**2))*(a - b*x**2)**(5/2)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{-b^{2} x^{4} + a^{2}}{\left (-b x^{2} + a\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-b*x^2+a)^(5/2)/(-b^2*x^4+a^2)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(-b^2*x^4 + a^2)*(-b*x^2 + a)^(5/2)), x)